HW2 , Math 531, Spring 2014

Ayman Badawi

QUESTION 1. (i) Let R be a finite ring (with more than one element) and with no nonzero zero-divisors. Prove that R must have an identity.
(ii) Let R be a finite ring (with more than one element) and with no nonzero zero-divisors. Prove that R is a division ring.
(iii) Let R be a ring with one (not necessarily commutative) and with no nonzero zero-divisors. Show that $\operatorname{char}(R)=$ p (prime) or 0
(iv) Let $R=Z_{8}(+) Z_{8}$. For $(a, b),(c, d) \in R$, define $(a, b)+(c, d)=(a+c, b+d)$ and $(a, b) .(c, d)=(a c, b c+a d)$. Then we know that R is a commutative ring with 1 . Show the following
a. Find all nonzero zero-divisors of R.
b. Find all nilpotent elements of R.
(v) Let R be a commutative ring with 1 , and $w \in \operatorname{Nil}(R)$. Prove that $1+w \in U(R)$. Then prove that $u+w \in U(R)$ for every $u \in U(R)$. [Hint: note that $u+w=\left(1+w u^{-1}\right) u$ and surely $w u^{-1} \in \operatorname{Nil}(R)$. You may need to use some basic elementary algebra facts, for example: $\left.x^{3}+1=(x+1)\left(x^{2}-x+1\right)\right]$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

